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We present the exact solution for the full dynamics of a nonequilibrium spin chain and its dual reaction-
diffusion model, for arbitrary initial conditions. The spin chain is driven out of equilibrium by coupling
alternating spins to two thermal baths at different temperatures. In the reaction-diffusion model, this translates
into spatially alternating rates for particle creation and annihilation, and even negative “temperatures” have a
perfectly natural interpretation. Observables of interest include the magnetization, the particle density, and all
correlation functions for both models. Two generic types of time dependence are found: if both temperatures
are positive, the magnetization, density, and correlation functions decay exponentially to their steady-state
values. In contrast, if one of the temperatures is negative, damped oscillations are observed in all quantities.
They can be traced to a subtle competition of pair creation and annihilation on the two sublattices. We
comment on the limitations of mean-field theory and propose an experimental realization of our model in
certain conjugated polymers and linear chain compounds.
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I. INTRODUCTION

Nonequilibrium many-body systems abound in the physi-
cal and life sciences and have recently received much atten-
tion ssee, e.g.,f1–3g and references thereind. Despite these
efforts, a comprehensive theoretical framework is still lack-
ing: As yet, there is no equivalent of Gibbs ensemble theory
for nonequilibrium systems. As a consequence, in contrast to
equilibrium statistical mechanics, macroscopic observables
cannot be computed without explicit reference to the im-
posed dynamics, generally described by a master equation,
and most progress in the field is made by studying paradig-
matic modelsf2g. In this context,exactsolutions of simple
models are scarce, but very precious, since they can serve as
testing grounds for approximate and/or numerical schemes
and shed light on general properties of whole classes of re-
lated models. Not surprisingly,nontrivial solutions are al-
most entirely restricted to one dimensions1D; see, e.g.,
f2,3gd, and have focused on completely uniform lattices with
site-independent rates. Clearly, however, one would like to
take into account more complex situations, e.g., those with
spatially varying coupling constants or rates. Arguably, one
of the simplest generalizations beyond a completely uniform
system is one with alternating rates. In the following, we
consider a 1D kinetic Ising chainsKISCd, coupled to two
alternating temperatures and endowed with Glauber-like dy-
namics. Our analysis of this model provides a full descrip-
tion of its dual counterpart, namely a reaction-diffusion sys-
tem sRDSd, characterized by spatially alternating
annihilation and creation rates. Members of these two
classes—i.e., kinetic Ising and reaction-diffusion models—
are prototypical nonequilibrium systems which have been

thoroughly studied on homogeneous latticesf2–7g. Yet they
still offer surprises and novel behaviors, when nontrivial spa-
tial rates are investigated.

Our model was first introduced by Ràcz and Ziaf8g, who
recognized thatsstationaryd two-point correlation functions
are easily found exactly, even though spins on alternating
sites are coupled todifferenttemperatures. Schmittmann and
Schmüser subsequently realized thatall stationary correla-
tion functions are exactly calculablef9g. While this informa-
tion is equivalent to the full stationary solution, its represen-
tation as exps−Heffd is nontrivial, involving a proliferation of
longer-ranged multispin couplingsf10g. Finally, we recently
reported the exact solution for alldynamiccorrelation func-
tions, starting from a very simple initial condition, i.e., zero
magnetization and vanishing correlationsf11g.

In this article, we complete these earlier studies by dem-
onstrating how competing site-dependent rates may dramati-
cally affect the dynamics by giving rise to anoscillatory
approach toward the nonequilibrium steady state. We use a
generating functional approach to obtain the complete solu-
tion for all correlation functions with arbitrary initial condi-
tions. We focus specifically on the dynamical magnetization
and the spin-spin correlations and explore their long-time
behavior. We will also consider the dynamics of domain
walls in the spin chain which can be mapped onto a reaction-
diffusion system. Interpreting our results in the language of
particle annihilation and creation, negative “temperatures”
acquire a natural physical meaning, leading to unexpected
oscillatory dynamics. From a more technical point of view,
we are able to obtain a complete solution for two nontrivial
nonequilibrium many-body systems which provides some in-
sight into the solvability of two whole classes of related
models.

The mapping to a reaction-diffusion system is of interest
for two reasons. On the theoretical side, the equations for
densities and correlation functions in the RDS form aninfi-
nite hierarchywhose solution is not at all apparent until one
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recognizes the equivalent spin chain model. Also, from an
experimental perspective, it is well known that diffusion-
limited reactions with annihilation and creation of pairs of
particles are good models for the photogrowth properties of
excited statesssolitons/antisoliton pairsd in certain conju-
gated polymers and linear chain compoundsf12–14g. We
propose that spatially alternating creation/annihilation rates
in these systems—especially in MX chain compounds—can
be generated with the help of a laser with spatially modu-
lated power output.

This article is organized as follows. In the next section,
we introduce the kinetic spin chain and its dual reaction-
diffusion system. Section III presents the complete solution
of the spin chain. Some technical details are relegated to two
Appendixes. In Sec. IV, we map the two-temperature spin
chain onto a reaction-diffusion system with alternating rates,
whose density and correlation functions are computed. We
analyze the conditions under which damped oscillations
characterize the approach to the steady state, and we com-
pare our exact results to a simple mean-field description.
Section V is devoted to a brief discussion of the solvability
of related models, with Sec. VI reserved for our conclusions.

II. THE MODELS

We consider two closely related nonequilibrium many-
particle systems on a one-dimensional lattice:sid a kinetic
Ising spin chain sKISCd endowed with a generalized
Glauber-like dynamics, andsii d a reaction-diffusion system
sRDSd, with spatially periodic pair annihilation and creation
rates. For convenience, we restrict ourselves to a periodic
lattice sa ringd with an even number of sites and study the
thermodynamic limit. We expect our exact results to be valid
for the general cases of an odd number of sites and/or arbi-
trary boundary conditions, apart from the usual caveats.

Since the RDS follows from the spin chain via a duality
relationship, we focus mainly on the detailed description of
model sid. A spin variable,s j = ±1, denotes the value of the
spin at site j , with j =1,2,… ,L, and L an even integer.
Nearest-neighbor spins interact according to the usual Ising
Hamiltonian:H=−Jo js js j+1, whereJ.0sJ,0d is the san-
tidferromagnetic exchange coupling. Our model is endowed
with a nonequilibriumgeneralization of the usual Glauber
f5g dynamics: spins on even and odd sites experience differ-
ent temperatures,Te and To, which implies the violation of
detailed balancef8–10g. To be specific, a configuration
hs1,s2,… ,sLj evolves into a new one by random sequential
spin flips: A spins j flips to −s j with rate

wjshsjd ; wjss j → − s jd =
1

2
−

g j

4
s jss j−1 + s j+1d, s1d

whereg2i =ge=tanhs2J/kbTed and g2i+1=go=tanhs2J/kbTod,
on evens j =2id and odds j =2i +1d sites. The time-dependent
probability distributionPshsj ,td obeys the master equation

]tPshsj,td = o
j

fwjshsj jdPshsj j,td − wjshsjdPshsj,tdg,

s2d

where the statehsj j differs from hsj only by the spin flip of
s j. Our main goal in this work is to compute the time-
dependent distributionPshsj ,td. To do so, we computeall
correlation functionsks j1

¯s jn
lt;ohsjs j1

¯s jn
Pshsj ,td and

invoke the following relationshipf5g:

2LPshsj,td = 1 +o
i

siksilt + o
j.k

s jskks jsklt

+ o
j.k.l

s jskslks jsksllt + ¯ . s3d

This expression illustrates that the knowledge ofall equal-
time correlation functions is equivalent to the complete
knowledge of the distribution functionPshsj ,td. Recently,
this implication was exploited for the steady statef9g, and for
the time-dependent situation yet restricted to a particularly
simple initial conditionf11g.

The spin-flip dynamics of this Ising chain can be ex-
pressed in terms of the creation, annihilation, and diffusion
of domain walls, i.e., pairs of spins with opposite sign. For
example, flipping s j in the local configurations j−1=s j
=s j+1= +1 creates two domain walls:s j−1=−s j and s j =
−s j+1, located on thebondss j −1,jd and s j , j +1d. Similarly,
flipping s j in the local configurations j−1=s j =−s j+1= +1
has the effect of moving the domain wall on bonds j , j +1d by
one lattice constant to the left, corresponding to domain-wall
diffusion. By identifying a domain wall with a “particle,”A,
our spin-flip dynamics can be recast as a reaction-diffusion
model, and the two examples translate intoxx→AA and
xA→Ax, respectively. The mapping from the KISC into its
dual RDS is described in detail in Table I.

Clearly, the presence of alternating temperaturesTe, To in
spin language translates into alternating pair annihilation and
creation ratess1±ge,od /2 in the RDS. We can see easily that
letting Te or To vanish simply prohibits pair creation entirely
at even or odd sites. Remarkably, we can derive an addi-
tional, and possibly rather unexpected, benefit from this

TABLE I. Basic processes underlying the KISCsleftd and RDSsmiddled dynamics.

Spin flip of site j Reactions at bonds next to sitej Rates

+−−→ + +− and −−+→−++ Ax→xA andxA→Ax 1/2

+−+→ + ++ s j evend AA→xx s j evend s1+ged /2

+−+→ + ++ s j oddd AA→xx s j oddd s1+god /2

++ +→ +−+ s j evend xx→AA s j evend s1−ged /2

++ +→ +−+ s j oddd xx→AA s j oddd s1−god /2
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mapping: Assigningnegativevalues for the temperaturesTe
and/orTo may appear artificial in the KISC, but isperfectly
natural in the RDS: For example,Te,0 simply corresponds
to a creation rates1−ged /2.1/2 which is easily imple-
mented in a simulation. In other words, the RDS version is
physically meaningful, and readily accessible, on a much
wider parameter space.

III. COMPLETE SOLUTION OF THE KINETIC
SPIN CHAIN

In this section, we completely solve the dynamics of the
KISC. It was shown previouslyf15g that the generating func-
tion, and hence the full distributionPshsj ,td, of a broad class
of Ising models can be computed from two very basic ob-
servables, namelysid the magnetizationmjstd=ks jlt for arbi-
trary initial condition, andsii d a particular two-point equal-
time correlation function,cj ,kstd=ks jsklt, the resultant from
the special initial conditionsmjs0d=cj ,ks0d=0 ssee Appendix
A for a more detailed discussion of this statementd. Here,
kslt;ohsjs Pshsj ,td denotes the usual configurational av-
erage. In the following, we assemble the necessary informa-
tion about these two observables.

A. The general t-dependent magnetization

From our earlier workf11g, we recall that the magnetiza-
tion mjstd=ks jlt of the KISC obeys the equation of motion,
sd/dtdmjstd=sg j /2dfmj−1std+mj+1stdg−mjstd, which is easily
derived from the master equation, Eq.s2d. As shown inf11g,
the general solution of this linear equation takes the form
mjstd=okMj ,kstdmks0d, where the “propagator”Mj ,kstd can be
written in term of modified Bessel functions of the first kind
Instd f16g,

Mj ,kstd = e−tÎg j

gk
Ik−jsatd with a ; sgegod1/2. s4d

If gego,0, the propagator becomes Mj ,kstd
= is−1dsk−jd/2ug j /gku1/2e−tJk−jsuautd f11g, whereJnstd is a Bessel
function of the first kind, with damped oscillatory asymptotic
behaviorf16g. This translates into an oscillatory decay of the
magnetizationf11g.

B. A special two-point equal-time correlation function

The second fundamental quantity, i.e., the equal-time
spin-spin correlation functionck,jstd, with k. j , is already
known fromf11g. For our purposes, it suffices to consider an
initial condition with zero magnetization and zero initial cor-
relations. With the boundary conditionks jsklt=1 for j =k,
this basic correlation depends only on the distance between
the two sites and their parity,mskd ,ms jdP he,oj f11g,

ck,jstd ; ck−j
mskd,ms jdstd =

ḡ

a2
Îg jgksk − jdE

0

2t dt

t
e−tIk−jsatd,

s5d

where

ḡ ; sge + god/2. s6d

For long times, these settle into their stationary valuesf8,9g,
independent of initial conditions,

ks jskl` ; ck,js`d =
ḡ

Îg j−1gk−1

vk−j , s7d

where

v ;
a

1 +Î1 − a2
, s8d

a quantity that reduces to the familiar tanhsJ/kbTd in the
equilibrium Ising chain. The approach to these values is ex-
ponential and monotonic, ase−2s1−adtt−3/2, providedgego.0.
However, for gego,0, the approach is oscillatory and
damped bye−2tt−3/2 f11g. For later reference, it is convenient
to display the parity dependence explicitly. Since translation
invariance ensuresck−j

oe std=ck−j
eo std, we need to distinguish

three types of correlations. The simplest display, which
manifestly shows the underlying symmetries, is

1ck−j
ee std

ck−j
eo std

ck−j
oo std

2 = 1ḡ/go

ḡ/a

ḡ/ge
2sk − jdE

0

2t dt

t
e−tIk−jsatd. s9d

Note that the last factor is of exactly the same form as in the
ordinary Ising chain coupled to a single thermal bath, the
only difference being the geometric mean of the twog’s here
plays the role ofg=tanhs2J/kbTd. Before turning to the gen-
eral case, let us remind the reader that Eqs.s5d and s9d give
the time-dependent correlations only for a system with no
initial magnetization and two-spin correlationsse.g., a ran-
dom distributiond. In particular, these forms, also used in the
next sections, should not be confused with the more general
cases considered in Appendix B.

C. Generating function and general multispin correlations

In this section, starting from our knowledge ofmjstd and
ck,jstd, we compute the generating function of the KISC, fol-
lowing f15g. By construction, this generating function allows
us to findall correlation functions, subject toarbitrary initial
conditions. A few additional technical details are provided in
Appendix A.

The generating function is defined viaCshhj ,td;kp js1
+h js jdlt, where thehh jj are standard Grassmann variables
f15,17g. In the thermodynamic limit,L→`, it simplifies to

Cshhj,td = Kp
j
S1 + s jo

k

hkMk,jstdDL
0

3 expS o
j2. j1

h j1
h j2

cj2,j1
stdD . s10d

If the initial magnetization and all initial correlations vanish,
the averagek¯l0 on the right-hand side of Eq.s10d reduces
to unity, and one recovers the bilinear form forCshhj ,td
which we already reported inf11g. Equations10d is one of
the key results of this paper.
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Given the generating function, all correlation functions
can be obtained by simple differentiationf11,15g:
ks j1

¯s jn
lt=f] nCshhj ,tdg / s]h jn

¯]h j1
duhhj=0. As an illustra-

tion, we compute the equal-time spin-spin correlation func-
tions, fork. j ,

ks jsklt = U ] 2Cshhj,td
]hk ] h j

U
hhj=0

= ck,jstd

+ o
,,m

ks,sml0fM,,jstdMm,kstd − M,,kstdMm,jstdg.

s11d

We emphasize that this is a completelygeneral result, valid
for any initial conditions, whether homogeneous or inhomo-
geneous, translationally invariant or not. The two terms in
Eq. s11d have simple interpretations. While the second term
reflects the decay of theinitial correlations, the first provides
the buildup to the final stationary values given above Eq.s7d.
Thus, we see explicitly how the stationary spin-spin correla-
tion function becomes independent of the initial values.

Higher-order correlations can also be evaluated but are
rather complex for general initial conditions. For uncorre-
lated, nonmagnetized initial conditions, however, they sim-
plify significantly f11g. For example, the four-point
function ks j1

s j2
s j3

s j4
lt factorizes into two-point functions,

according to ks j1
s j2

s j3
s j4

lt=cj2,j1
stdcj4,j3

std−cj3,j1
stdcj4,j2

std
+cj4,j1

stdcj3,j2
std for j4ù j3ù j2ù j1 f11g. Similar factoriza-

tions hold for all correlations. Their steady-state behavior
can be computed directly from the master equationf9g or
from the stationary limit of the generating function,
Cshhj ,`d=expfok. jh jhkck,js`dg. Thanks to this simple
form, the 2n-point correlations factorize into a
product of two-point correlations:ks j1

s j2
¯s j2n−1

s j2n
l`

=ks j1
s j2

l`¯ ks j2n−1
s j2n

l`, where j2n. j2n−1. ¯ . j2. j1.
Finally, following Refs. f5,11g, we can also derive the

unequal-time spin-spin correlation functionsck,jst8 ; td de-
scribing how a spin on sitek at time t is correlated with the
spin on sitej at a later timet+ t8,

ck,jst8;td = o
,

Mj,st8dksks,lt

= o
,

Mj ,,st8dck,,std + o
,

o
k1,,1

ksk1
s,1

l0Mj ,,st8d

3fMk1,kstdM,1,,std − Mk1,,stdM,1,kstdg. s12d

As an illustration of these general results, in Appendix B we
specifically compute the spin-spin correlation functions for
general translationally invariant initial conditions.

IV. CONSEQUENCES FOR A REACTION-DIFFUSION
MODEL WITH ALTERNATING RATES

In this section, our exact results will be translated into the
language of the corresponding reaction-diffusion model. We
first associate a siteĵ on the dual lattice with every bonds j
−1,jd of the original chain. Since the particles of the RDS
are identified with domain walls in the spin chain, they ob-

viously reside on the dual lattice. Each siteĵ can be occupied
by at most one particle, described by an occupation variable
nĵ which takes the value 0s1d if the site is emptysoccupiedd.
Since a domain wall involves two neighboring spins, the
mapping from spin to particle language is nonlinear, namely,
nĵ =

1
2f1−s j−1s jg. As before, we seek the probability,

P̂shnj ,td, to find configurationhnj at timet, and its averages:

the local particle densityr ĵstd;knĵlt;ohnjnĵP̂shnj ,td and
the m-point correlation functions, knĵ1

¯nĵm
lt

;ohnjnĵ1
¯nĵm

P̂shnj ,td. To simplify notation, we continue to
denote averages byk·lt for both spins and occupation vari-
ables, even though they are controlled by different statistical
weights,Pshsj ,td and P̂shnj ,td, respectively. In each case, it
should be perfectly clear from the context which distribution
is relevant. The dynamics of our model is characterized by
symmetric diffusion of particlesswith rate 1/2 and pair
annihilation/creation of particles with spatially alternating
ratess1±g jd /2. In this case, the two particles are created on
the sdual latticed sites ĵ and ĵ +1, by flipping a spin on the
soriginal latticed site j . Sinceg j can be positive or negative,
subject only to −1øg j ø1 for all j , two very distinct behav-
iors emerge:sid when bothge and go are positivescorre-
sponding to positive “temperatures” in the spin modeld, the
annihilation process always occurs with alarger rate than the
creation process, irrespective of whetherj is even or odd;sii d
when, e.g.,go is negative andge positive, the system dis-
plays amild site-dependent frustration: at even sitesj si.e., ĵ
even andĵ +1 oddd, annihilation is more likely than creation,
whereas the situation is reversed on odd sitesswith ĵ odd and
ĵ +1 evend. As we will see shortly, this gives rise tooscilla-
tory dynamics.

Before diving into the details, some further remarks on
physical realizations of this model are in order. When the
rates are uniformsge=god, it is well known that such an RDS
describes the dynamics of photoexcited solitons in conju-
gated polymers or linear chain compounds. MX chain com-
pounds,fPtsend2gfPtsendCl2gY4, whereY stands for ClO4 or
BF4 and send for enthylenediamine, are of particular experi-
mental interestf12,13g. In these compounds, photogenerated
solitons are so long-lived that they can be experimentally
studied. Irradiation with continuous-wavesnonpulsedd blue
light generates soliton-antisoliton pairs which can diffuse
apart or annihilate. Their static and dynamic properties are in
quantitative agreement with theoretical modelsf4,18g. Since
creation, annihilation, and hopping rates can be controlled by
tuning the laser power, we believe that spatially alternating
rates such as ours will be generated if an MX chain com-
pound is exposed to a spatially modulated light intensity.

Returning to our model, our goal in this section is first to
derive all correlation functions from our exact solution of the
KISC. We will also comment on the validity of a simple
mean-field theory which is widely used for the homogeneous
sge=god casef18,19g. Further, we show that particle hops in
the RDS develop a peculiar directional preference in the
steady state, even though there is no explicit bias in the rates,
boundary, or initial conditions. Finally, we illustrate how os-
cillatory behaviors may result from a competition of the un-
derlying processes.
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A. Density of particles in the RDS

The observable of most immediate interest is the average
density of particles,r ĵstd, in the RDS. Its equation of motion
can be derived easily from the associated master equation,
resulting in

2
d

dt
r ĵstd = s2 − g j − g j−1d + fg j−1r ĵ−1std + g jr ĵ+1stdg

− s4 − g j − g j−1dr ĵstd

− 2fg jknĵnĵ−1lt + g j+1knĵnĵ−1ltg. s13d

It is worthwhile noting that this equation is the first member
of an infinite hierarchy, connecting lower-order correlations
to higher-order ones. In general, such hierarchies cannot be
solved directly, without recourse to crude approximations.
Here, the mapping to the spin chain develops its full power,
allowing us to compute all correlation functions for the RDS.

The mapping from spins to particles implies thatr ĵstd
;knĵl= 1

2f1−ks j−1s jltg, so that we can just turn to Eq.s11d to
read off the answer. To express it fully in RDS language, we
also need to translate the initial correlations,ksks,l0.
For k,, and any t sincluding t=0d, we may
write ksks,lt=ksksk+1sk+1sk+2¯s,−1s,lt=ks1−2nk̂+1ds1
−2nk̂+2d¯ s1−2n,̂dlt f18,20g when we obtain, for arbitrary
initial condition,

r ĵstd =
1

2
h1 − cj ,j−1stdj −

1

2 o
k̂,,̂

ks1 − 2nk̂+1d

3s1 − 2nk̂+2d ¯ s1 − 2n,̂dl0

3 fMk,j−1stdM,,jstd − Mk,jstdM,,j−1stdg. s14d

Since the “propagators”Mi,jstd decay exponentially ast
→`, the steady-state density is independent of initial condi-
tions and spatially uniform,

rs`d ; r js`d =
1

2
S1 −

ḡ

Îgego

vD . s15d

In Appendix B, we explicitly evaluate Eq.s14d for a ge-
neric but simple initial condition, characterized by a uniform,
uncorrelated initial distribution of particles, with density
rs0d. For simplicity, we discuss only its long-time limit here,
for rs0d=1/2. Weobserve two distinct kinds of behaviors.

sid When gego.0, the stationary density of particles is
approached exponentially fastfexcept whenge=go= ±1, see
Eq. sB15dg, with inverse relaxation time 2s1−ad, and a sub-
dominant power-law prefactort−3/2,

rstd =
1

2S1 −
ḡ

a
E

0

2t dt

t
e−tI1satdD . rs`d +

t−3/2e−2s1−adt

2Î2pas1 − ad
.

s16d

This long-time behavior is very similar to that found in the
usualsge=goÞ ±1d pair diffusion, annihilation, and creation
processAA�xx f4,18g.

sii d For goge,0, we observe a competition between the
different processes. For example, when −1øgo,0 and 0

,geø1, the annihilationscreationd reaction dominates on
evensoddd sites. As a result, the stationary density is reached
exponentially fast withdamped oscillations,

rstd =
1

2S1 −
ḡ

uauE0

2t dt

t
e−tJ1satdD

. rs`d − e−2tFsins2uaut − p
4 d + uaucoss2uaut − p

4 d
4s1 + uau2dtÎpuaut

G .

s17d

For initial densities other than 1/2, as shown in Appendix
B, only the amplitude, or the subdominant power-law pref-
actor, of the expressionss16d and s17d changes. Since they
depend on all parameters of the model, including the initial
density, the dynamics is manifestlynonuniversal.

B. Two-point correlation functions of the RDS

A deeper understanding of the time-dependent spatial
structures of our RDS is provided by them-point correlation
functions,knĵ1

¯nĵm
lt, of such a model. These are related to

the correlation functions of the dual spin chain, via
knĵ1

¯nĵm
lt=2−mks1−s j1−1s j1

d¯ s1−s jm−1s jm
dlt, and are

therefore exactly known. It is interesting to note that the
m-point correlation function for the RDS is a superposition
of all 2n-point correlation functions for the spin chain, with
n=1,2,¯ ,m. In the following, we focus on the most di-
rectly observable correlation, namely, the two-point function.
To avoid unnecessary technical complications which add
little insight, we specifically consider a system that is ini-
tially homogeneously half-filled withA particles, without
any initial correlations:r ĵs0d=1/2 andknĵs0dnk̂s0dl=1/4 for

ĵ Þ k̂. Such an initial configuration corresponds, in the KISC
picture, to a system with initially neither magnetization nor
correlations. In this case, as we showed inf11g, the generat-
ing function takes a rather simplebilinear form which sim-
plifies the spin-spin correlations.

With this initial condition, both the spin chain and the
RDS are translationally invariant, modulo period 2. As a re-

sult, the two-point correlationsC
k̂− ĵ

msk̂d,ms ĵd
std;knĵnk̂lt between

two sites ĵ and k̂ swith k̂. ĵd depend only on the distancek̂

− ĵ and the paritymsk̂d ,ms ĵdP he,oj of the two sites. We
therefore need to distinguish four distinct correlation func-
tions: C

k̂− ĵ

ee std, C
k̂− ĵ

eo std, C
k̂− ĵ

oe std, and C
k̂− ĵ

oo std. By virtue of our
mapping to the KISC, these are determined by the two- and
four-point spin correlations as explained in Sec. III Cffrom
Eqs. s9d and s10dg. Exploiting translational invariance, the

two-point correlations for the RDS, fork̂. ĵ , then follow as

knĵnk̂lt =
1

4
hf1 − c1

eostdg2 − ks jsklt
2j +

1

4
ks j−1skltks jsk−1lt.

s18d

Now we are ready to discuss our results. First of all, we
consider a special case, namely, nearest-neighbor correla-

tions. If k̂= ĵ +1, Eq.s18d reduces to
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knĵnĵ+1lt =5
1 − 2c1

eostd + c2
oostd

4
= C1

oestd, ĵ even

1 − 2c1
eostd + c2

eestd
4

= C1
eostd, ĵ odd.6

s19d

Again, we should emphasize that the quantitiescn
eostd,

cn
eestd, and cn

oostd which appear in this section are the spin
correlations for a particular initial conditionfcf. Eq. s9dg, in
contrast to the more general correlations computed in Appen-
dix B.

It is interesting to note that, generically,C1
oestdÞC1

eostd. Of
course, after a little thought this becomes less surprising,
since knĵnĵ+1lt involves the four-spin correlation

ks j−1s js js j+1lt=ks j−1s j+1lt. So, if ĵ is odd sevend, both j
−1 andj +1 are evensoddd, leading to a contribution ofc2

eestd
versusc2

oostd, respectively.

For the general case, whenk̂ and ĵ are not nearest neigh-
bors, this difference betweenC

k̂− ĵ

eo std andC
k̂− ĵ

oe std does not per-

sist. If k̂ is even andĵ is odd, we find

C
k̂− ĵ

eo std =
1

4
hf1 − c1

eostdg2 − fck−j
eo stdg2j +

1

4
ck−j+1

ee stdck−j−1
oo std,

s20d

and for k̂ odd andĵ even one obtains

C
k̂− ĵ

oe std =
1

4
hf1 − c1

eostdg2 − fck−j
eo stdg2j +

1

4
ck−j+1

oo stdck−j−1
ee std.

s21d

Thanks to the simple relation between even-even and odd-
odd spin correlations, Eq.s9d, the two right-hand sides are
now identical.

A similar line of reasoning shows thatC
k̂− ĵ

ee std=C
k̂− ĵ

oo std for

arbitrary separationk̂− ĵ . Invoking the two-spin correlations
again, we may write

C
k̂− ĵ

ee std = C
k̂− ĵ

oo std =
1

4
hf1 − c1

eostdg2 − ck−j
oo stdck−j

ee std

+ ck−j+1
eo stdck−j−1

eo stdj. s22d

In the following, we discuss the consequences of these
results. We first consider the steady state. Recalling our pre-
vious analysis of the spin correlations, Eq.s7d, the stationary
limit of the density-density correlations becomes very

simple: Provided k̂− ĵ .1, we find C
k̂− ĵ

msk̂d,ms ĵd
s`d= 1

4f1
−c1

eos`dg2=r2s`d. In other words, the two-point correlations
of non-nearest-neighborsites factorize into one-point func-
tions, independent of parity. This kind of mean-field-like be-
havior is typical of free-fermionsystemsf4,18g. However,
the nonequilibrium nature of this model still imposes its sig-
nature. Turning to thenearest-neighborcorrelations, we find
that this simple factorization no longer holds—except in the
special case wherege=go. More specifically, we find

C1
oes`d = r2s`d − sge

2 − go
2dS v

4a
D2

s23d

and

C1
eos`d = r2s`d + sge

2 − go
2dS v

4a
D2

. s24d

Considering, e.g., 0,go,ge, we find that C1
eos`d is en-

hanced over the mean-field result whileC1
oes`d is suppressed.

This can be understood easily: Sincego,ge implies Te
,To, energetically costly spin flips occur more frequently on
odd sitesj , creating a particle pair on the nearest-neighbor
dual sitess ĵ +1, ĵd. Clearly, these sites form anse,od pair.
Moreover, the rate for pair annihilation is lower onse,od
sites. Hence, particle pairs are more likely to reside onse,od
than onso,ed sites. This also implies thatse,od sites act as
net particle sources, whileso,ed sites function as sinksf10g.
Not surprisingly, therefore, we findC1

eos`d.C1
oes`d. By vir-

tue of this reasoning, it is also immediately apparent that this
difference can only persist for nearest-neighbor correlations.
The same argument holds forgo,0,ge.

A direct consequence ofC1
oestdÞC1

eostd is the presence of a
peculiar directional preference in the RDS. If we consider a
particle on siteĵ , we can ask for the average rate,R ĵstd, with

which it will jump to the leftsi.e., to siteĵ −1d versus to the
right, defined asR ĵstd; 1

2knĵs1−nĵ+1d−nĵs1−nĵ−1dlt. Here,
the firstssecondd term is the average rate for a particle on site
ĵ to jump to siteĵ +1s ĵ −1d. In our case, one might expect this
difference to vanish since neither bulk rates nor boundaries
impose a directional bias. Moreover, to avoid a potential bias
at t=0, we start from a translationally invariant initial con-
dition with rs0d=1/2. Yet,sinceR ĵstd~ C1

oestd−C1
eostd, it is

manifestly nonzero. Explicitly, we find

R ĵstd =H 1
8f1 −

go

ge
gc2

eestd, ĵ even

1
8f go

ge
− 1gc2

eestd, ĵ odd,
J s25d

which even persists in the steady state,

R ĵs`d =Hsge
2 − go

2ds v
4ad2, ĵ even

sgo
2 − ge

2ds v
4ad2, ĵ odd.

J
Specifically, forgo,ge, particles on an evensoddd site jump
preferentially to the rightsleftd. Of course, this directional
preference vanishes as soon asge=go. Moreover, even when
it is nonzero, it does not generate a mass current. Counting
thenetflow of particles between sitesĵ and ĵ +1, the natural
definition of such a current isJ ĵstd= 1

2ks1−nĵdnĵ+1−nĵs1
−nĵ+1dlt. Clearly, this expression reduces to a density differ-
ence which vanishes for all times provided the initial condi-
tion is homogeneous. For inhomogeneous initial condition,
J ĵstd exhibits nonzero transients for finite times but decays
as t→`.

Let us conclude this section with a few brief remarks
about the validity of the mean-field approximation for this
system. We already noted that it does not predict the nearest-
neighbor correlations correctly, except in the special case
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ge=go. We now show that it also generically misses the sta-
tionary density.

We begin by recalling Eq.s13d. Seeking a translationally
invariant smodulo 2d solution with r2ĵstd=restd, r2ĵ+1std
=rostd for all ĵ , the mean-field approximation corresponds to
truncating two-point functions:knĵstdnĵ−1stdl.restdrostd.
Starting from a uniform initial densityrs0d, we find restd
=rostd;rMFstd, with

rMFstd =
rpfrs0d − rmg − rmfrs0d − rpge−tÎ4−sge + god2

rs0d − rm + frs0d − rpge−tÎ4−sge + god2

. rp − rmS rs0d − rp

rs0d − rm
De−tÎ4−sge + god2, s26d

where

rp,m =
1

2
F1 −

2

ge + go
±

Î4 − sge + god2

ge + go
G .

The stationary limit is clearlyrMFs`d=rp which differs from
our exact result, Eq.s15d, except ifge=go. In other words,
the remarkable accuracyf18,19g of the mean-field approxi-
mation for the stationary state of the uniform systemsge

=god appears to be an “accident” due to the fact that when
rates are uniform, the steady state is a product measure. We
also note that the exact relaxation time to the steady state,
texact=f2−Îgegog−1, does not coincide with the mean-field
prediction,tMF=fÎ4−sge+god2g−1. For such dynamic quan-
tities, the exact and the approximate results differ for any
choice ofge and go. In particular, the mean-field theory al-
ways predicts an exponential decay to the steady state, com-
pletely missing the possibility of oscillatory behavior.

V. SOLVABILITY AND RELATIONSHIP WITH FREE
FERMION SYSTEMS

The crucial ingredient for the solvability of the KISC is
the quadratic spin dependence of its Glauber-like kinetics.
Thanks to this simple form, the hierarchy of equations for the
correlation functions is closed: to solve the equations for the
N-spin correlation functions, one needs to know only
m-point correlations withmøn.

In RDS language, the dynamics of the particles can be
rewritten as afree fermionmodel, by defining a suitable qua-
dratic sbut non-Hermitiand “stochastic Hamiltonian.” Fol-
lowing standard methodsf3,4,18,21g, we can rewrite the
master equation for the RDS as a formal imaginary-time
Schrödinger equation:sd/dtduPstdl=−HuPstdl. The Hamil-
tonianH is constructed by associating the usual Pauli matri-
ces s

ĵ
−ss

ĵ
+d with the creationsannihilationd of a particle at

site ĵ ,

− 2H = o
ĵ even

fs ĵ
+
s ĵ+1

−
+ s ĵ

−
s ĵ+1

+
+ s1 + geds ĵ

+
s ĵ+1

+

+ s1 − geds ĵ
−
s ĵ+1

−
− gess ĵ

−
s ĵ

+
+ s ĵ+1

−
s ĵ+1

+ d

− s1 − gedg + o
ĵ odd

fs ĵ
+
s ĵ+1

−
+ s ĵ

−
s ĵ+1

+

+ s1 + gods ĵ
+
s ĵ+1

+
+ s1 − gods ĵ

−
s ĵ+1

−

− goss ĵ
−
s ĵ

+
+ s ĵ+1

−
s ĵ+1

+ d − s1 − godg. s27d

The key to the solvability of this Schrödinger equation
lies in the bilinear dependence of the Hamiltonian on the
Pauli matrices. This is due to the fact that the spin-flip rates
s1d implicitly fulfill the free-fermionconstraintf3,4,18g. In
RDS language, this condition requires that the sum of the
particle diffusion rates equal the sum of theslocald annihila-
tion and creation rates, i.e.,1 /2+1/2=s1+g jd /2+s1−g jd /2
with j P he,oj in our case. If this relation is violated,H in-
cludes quartic terms, of the formo ĵs ĵ

−
s

ĵ
+
s

ĵ+1
−

s
ĵ+1
+

, and the
associated RDS can no longer be solved exactly. It can, of
course, be simulated, and for those cases investigated so far,
it appears that the quartic terms are irrelevant for the long-
time dynamicsf4,19g. It is also worth noting that the free-
fermion constraint is not particularly artificial: the simplest
models for photogenerated solitons in MX chain compounds
satisfy it quite naturallyf12g.

Here we decided to invoke generating function techniques
instead of diagonalizing Eq.s27d. In our view, this is the
most convenient and systematic approach to solvesimulta-
neouslyboth the KISC and RDS, for two reasons. First, the
free-fermion approach requires various technical stepsse.g.,
introduction of so-called pseudofermion operators and a
Bogoliubov-like transformationd which make the general
treatment rather involved, especially for arbitrary initial con-
ditions f4,18g. Further, the diagonalization of Eq.s27d yields
only correlation functions with anevennumber of spinsssee
Secs. III and IVd; the calculation of correlations involving an
odd number of spins requires a dual transformation of Eq.
s27d into a new stochastic Hamiltonian which must also be
diagonalizedf20g.

Let us also mention that damped oscillatory decay has
been observed before in certain reaction-diffusion models
f3g. However, those models, and hence the physical mecha-
nisms leading to the oscillations, are completely different
from ours. As an example, a diffusion-limited fusion model
f3g is defined by three processes:sid biased diffusion:Ax
→xA with rateDs1+hd, xA→Ax with rateDs1−hd swith
0,høDd; sii d biased fusion:AA→xA with rateDs1+2hd,
AA→Ax with rate Ds1−2hd; and siii d homogeneous pair
production:xx→AA, with rateD. With this special choice
of rates, the equation of motion for the density closes and
becomes solvable. In order to observe oscillatory decay of
the particle density, the initial condition must beinhomoge-
neous. For a homogeneous initial condition, the density de-
cays exponentially. In contrast, the equation in our reaction-
diffusion model does not close, and the oscillatory behavior
is generic: it occurs for any initial condition, inhomogeneous
or not.

VI. CONCLUSIONS

To summarize, we have presented a full exact solution for
the dynamics of a nonequilibrium Ising spin chain, with ar-
bitrary initial condition. The model is characterized by a gen-
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eralization of Glauber dynamics: spins on even/odd sites are
coupled to alternating temperatures,Te andTo. We obtain all
correlation functions from a generating functional. As an il-
lustration, we have discussed the equal-time and the two-
time spin-spin correlation functions.

Identifying domain walls in the spin system with particles
on the dual lattice, the model can also be interpreted as a
reaction-diffusion system. Particles are created and annihi-
lated in pairs; the rates for these processes alternate from
even to odd sites. This mapping opens up an interesting ex-
tension of parameter space: while negative temperatures are
unphysical for the spin chain, the corresponding rates are
perfectly natural in the context of the RDS. By expressing
particle-particle correlations as superpositions of spin-spin
correlation functions, the RDS becomes exactly soluble. This
is not entirely trivial since the BBGKYf22g hierarchy for the
RDS isnot closed: its solution is far from obvious unless one
recognizes the connection to the spin chain.

For 0,ge go, energetically favorable spin flips always
dominate over unfavorable ones, irrespective of whether they
occur on even or odd sites. In RDS language, pair annihila-
tion is always more probable than pair creation. As a conse-
quence, we find that all quantities decay exponentially to
their steady-state values. In contrast, forgego,0, we ob-
servesdampedd oscillatory behavior. Its origin can be traced
to a competitionof pair creation and annihilation on even
versus odd sites on the original lattice: If, say,go,0, then
pair creation dominates over annihilation on odd sites while
the relation is reversed on the even sites. Hence, a given
initial particle density may first decrease, due to annihilation
processes, and then recover, as the available empty sites are
spartiallyd filled again by the strong creation process, and so
on, until the stationary density is reached.

Remarkably, even in the absence of any bias in the rates,
boundary, or initial conditions, particles still “know” the dif-
ference between right and left: For, e.g.,go,ge, particles on
evensoddd sites jump preferentially to the rightsleftd. Even
though this directional preference does not lead to a system-
atic particle current, it is still somewhat surprising. However,
once we recall that particles are most often createdsannihi-
latedd on pairs of neighboring sites, with the odd site on the
left srightd, we recognize that the directional preference is
simply a response to this density gradient.

Since exact solutions, especially of a full nonequilibrium
dynamics, are rare, we hope that our model can serve as a
testing ground for various generalizations or approximations.
The features reported here—exponential decays, damped os-
cillations, and directional preference—should be generic for
a whole class of genuine out-of-equilibrium models. More-
over, they should be experimentally observable in MX chain
compounds exposed to spatially modulated laser light.
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APPENDIX A: THE DERIVATION OF THE
GENERATING FUNCTION

In this appendix, we provide some details for the deriva-
tion of the generating functions10d, which is one of the key
results of this work. We follow Aliev’s work and notation
f15g. Aliev established that the generating functions of a very
general class of disordered Glauber-Ising spin chains, includ-
ing our case, can formally be expressed in terms of two
functionsMj ,k

± std and two additional quantitiesWj ,k
± std, which

depend in a very involved fashion onMk,j
± std. Below, we will

see that these quantities are closely related to physical ob-
servables, namely, the magnetization and the two-point cor-
relations. Here, we follow Aliev by noting that the Laplace

transform ofM̂ j ,k
± is the inverse of anL3L band matrixss

+1d1− 1
2U±. For our case, the entries of this matrix can be

taken from the rates and read explicitlysL is evend,

Fss+ 1d1 −
1

2
U±G

2j−1,k
= ss+ 1dd2j ,k −

go

2
sd2j−1,k−1 + d2j−1,k+1d

s1 , j ø L/2d,

Fss+ 1d1 −
1

2
U±G

2j ,k
= ss+ 1dd j ,k −

ge

2
sd2j ,k−1 + d2j ,k+1d

s1 ø j , Ld,

Fss+ 1d1 −
1

2
U±G

1,k
= ss+ 1dd1,k −

go

2
sd2,k 7 dk,Ld,

Fss+ 1d1 −
1

2
U±G

L,k
= ss+ 1ddL−1,k −

go

2
sdL−1,k 7 d1,kd.

sA1d

Given Eqs. sA1d, it is easy to evaluate the inverse of
fss+1d1−s1/2dU±g j ,k,

M̂k,j
± =

1

L
Îgk

g j
o
n=1

L
eisk−jdfn

±

s+ 1 −a cosfn
± , sA2d

where fn
+=fps2n−1dg /L and fn

−=s2pnd /L, with n
=1,2,… ,L. In the thermodynamic limitL→`, the two

quantitiesM̂ j ,k
+ andM̂ j ,k

− coincide whence we simply have

M̂k,j
± → M̂k,j =Îgk

g j
E

0

2p df

2p

eisk−jdf

ss+ 1 −a cosfd
. sA3d

Taking the inverse Laplace transform of Eq.sA3d, we re-
cover Eq.s4d for the propagator.

Since theWj ,k
± std can be expressed in terms of theMj ,k

± std,
we may immediately conclude thatWj ,k

± std→Wj ,kstd as L
→`. According to Aliev,Wj ,kstd is simply the two-point cor-
relation function,ks jskÞ jlt, for a particular initial condition,
namely,mjs0d=0 andks jskÞ jl0=0. For our case, these cor-
relations were given in Eq.s5d.
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For readers familiar with Aliev’s workf15g, these remarks
fill in the gaps between Aliev’s formal and general analysis
and the special case we are interested in here. It follows that
the generating function of our KISC admits the compact and
explicit representation of Eq.s10d, which encodes thecom-
pletedynamics of the system.

APPENDIX B: TRANSLATIONALLY INVARIANT INITIAL
CONDITIONS: THE SPIN-SPIN CORRELATION

FUNCTIONS AND THE PARTICLE DENSITY

In Sec. III B, we have derived an exact expression, Eq.
s11d, for the spin-spin correlation functions of our KISC,
valid for arbitrary initial conditions. Here, we impose a natu-
ral restriction, namely, translational invariance, on the initial
conditions. Thanks to the symmetry, Eq.s11d simplifies con-
siderably, as we will show now.

As we already pointed out inf11g, for translationally in-
variant initial conditions, we only need to consider the cor-
relations between spins at two even sites, two odd sites, and
one even, one odd site. We denote these byc2n

eestd
;ks2,s2s,+ndlt, c2n

oostd;ks2,−1s2,−1+2nlt, c2n−1
eo std=c2n−1

oe std
;ks2,s2,+2n−1lt=ks2,+1s2,+2nlt. Of course, there is no need
to studyn,0 cases. For the special case of zero initial mag-
netization and correlations, these correlations are already
known f11g and are given by Eq.s9d. Here, we seek their
form in a more general case, starting from a homogeneous
initial condition.

Let us recall fromf11g that in the translationally invariant
case, the quantities a2nstd;s1/2dfgec2n

oostd+goc2n
eestdg,

a2n−1std;ac2n−1
eo std, obey the following simple equation:

sd/dtdaj =−2aj +afaj−1+aj+1g, j .0 with the initial condition
a0std= ḡ and ḡ;sge+god /2. The equations of motion of the
KISC f11g also give the following relationships
among the correlators: c2n

oostd=sgo/gedc2n
eestd+fc2n

oos0d
−sgo/gedc2n

ees0dge−2t.
The explicit expressions for the correlators follow from

Eq. s11d, or by the methods of images directly
from the expressionanstd=ans`d+e−2tomù0fams0d−ams`dg
3hIn−ms2atd− In+ms2atdj, whereans`d= ḡvk andnù0. From
the definitions ofan, we immediately infer

c2n
eestd =

ge

go
c2n

oostd − Sge

go
c2n

oos0d − c2n
ees0dDe−2t

=
a2ns`d

go
+

e−2t

go

3 o
mù0

fa2ms0d − a2ms`dghI2sn−mds2atd − I2sn+mds2atdj

+
ae−2t

go
o
m.0

fc2m−1
eo s0d − c2m−1

eo s`dghI2sn−md+1s2atd

− I2sn+md−1s2atdj −
e−2t

2go
fgec2n

oos0d − goc2n
ees0dg. sB1d

Following the same steps forc2n−1
eo =c2n−1

oe , we obtain, forsn
.0d,

c2n−1
eo std = c2n−1

eo s`d + e−2t o
m.0

fc2m−1
eo s0d − c2m−1

eo s`dg

3hI2sn−mds2atd − I2sn+m−1ds2atdj +
e−2t

a
o
m.0

fa2ms0d

− a2ms`dghI2sn−md−1s2atd − I2sn+md−1s2atdj. sB2d

The expressionssB1d andsB2d illustrate that the time de-
pendence of the spin-spin correlation function depends non-
trivially on the initial condition, and we may therefore an-
ticipate nonuniversalbehavior. Of course, whenge=go, the
expressionssB1d and sB2d coincide with those obtained by
Glauberf5g.

An interesting situation occurs when, say,go is negative
while 0,geø1, so thata= i uau. Then, we haveI2ns2i uautd
=s−1dnJ2ns2uautd and I2n±1s2i uautd= ± is−1dnJ2n±1s2uautd,
where Jnsxd;e0

psdq/pdcossx sinq−nqd is the Bessel func-
tion of the first kindf16g. Further, whena= i uau, the expres-
sionssB1d and sB2d become

c2n
eestd =

ge

go
c2n

oostd − Sge

go
c2n

oos0d − c2n
ees0dDe−2t

= −
a2ns`d

ugou
−

e−2t

ugou o
mù0

fa2ms0d − a2ms`dgs− 1dn+m

3hJ2sn−mds2uautd − J2sn+mds2uautdj +
uaue−2t

ugou

3 o
m.0

fc2m−1
eo s0d − c2m−1

eo s`dgs− 1dn+m

3hJ2sn−md+1s2uautd + J2sn+md−1s2uautdj

−
e−2t

2go
fgec2n

oos0d − goc2n
ees0dg, sB3d

c2n−1
eo std = c2n−1

eo s`d + e−2t o
m.0

fc2m−1
eo s0d − c2m−1

eo s`dgs− 1dsn+md

3hJ2sn−mds2uautd + J2sn+m−1ds2uautdj

−
e−2t

uau o
m.0

fa2ms0d − a2ms`dgs− 1dsn+md

3hJ2sn+md−1s2uautd − J2sn−md−1s2uautdj. sB4d

In the long-time limit, these expressions exhibit a damped
oscillatory approach to the stationary state.

We now turn to the equivalent RDS. As we have seen in
Sec. IV A, the density of particles is related to the nearest-
neighbor spin correlations,c1

eo, according to rstd= 1
2f1

−c1
eostdg. Here, our goal is to determine the long-time behav-

ior of this density for a homogeneoussbut otherwise arbi-
traryd initial concentration of particlesrs0d. In this respect,
the expressionssB2d and sB4d are not very practical as they
involve infinite sums of Bessel functions. At this point, for
further convenience, it is useful to introduce four auxiliary
functions defined as followsswith 0ølø1d:
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F1sl,td ; o
m.0

l2m−1e−2thI2sm−1ds2atd − I2ms2atdj

= 2ls1 + l2dE
0

p dq

p

e−2ts1−a cosqdsin2q

1 + l4 − 2l2cos 2q
, sB5d

F2sl,td ; o
m.0

l2me−2thI2m−1s2atd − I2m+1s2atdj

= 2l2E
0

p dq

p
e−2ts1−a cosqdF sin 2q sinq

1 + l4 − 2l2cos 2q
G ,

sB6d

G1sl,td ; − o
m.0

l2m−1s− 1dme−2thJ2s1−mds2uautd + J2ms2uautdj

= 2ls1 + l2dE
0

p dq

p
e−2tcoss2uaut sinqd

3F cos2 q

1 + l4 + 2l2cos 2q
G , sB7d

G2sl,td ; − o
m.0

l2ms− 1dme−2thJ2m+1s2uautd − J1−2ms2uautdj

= 2l2E
0

p dq

p
e−2tsins2uaut sinqd

3F sin 2q cosq

1 + l4 + 2l2cos 2q
G . sB8d

To establish these expressions, we have invoked the inte-
gral representation of the Bessel functionsf16g and the prop-
erties of geometric series. With these functions and the help
of Eq. s14d, the density of particles in the RDS model can
now be recast in compact form. Two cases emerge naturally,
as follows.

Whengego.0,

rstd − rs`d =
ḡ

2a
fF1sv,td + F2sv,tdg

−
1

2
FF1„1 − 2rs0d,t… +

ḡ

a
F2„1 − 2rs0d,t…G .

sB9d

Whengego,0,

rstd − rs`d =
ḡ

2uau
fG2„1 − 2rs0d,t… − iG1sv,tdg

−
1

2
F ḡ

uau
G2sv,td + G1„1 − 2rs0d,t…G .

sB10d

The casegego=0 is special and gives rise to a purely expo-
nential time dependence,

rstd =
ḡ

2
+ S ḡ − 2

4
+ rs0dDe−2t. sB11d

We now proceed with the analysis of the long-time behav-
ior of these expressions. Again, we first consider the case
wheregego.0 and thengego,0.

When gego.0, the main contribution to the long-time
behavior arises from the smallq contribution in the expres-
sion of the functionsF1 andF2. Therefore, one may expand
the integrand ofF1 andF2 in Eq. sB9d. It is also essential to
pay due attention to the initial condition.

sid When 0,gego,1 and 0,rs0d,1 falso
rs0dÞrs`dg, we obtain

rstd − rs`d .
1

4
F ḡv

as1 − v2d

−
s1 + ḡ

adh1 − 2rs0dj + 2rs0d2

rs0ds1 − rs0dd
Ge−2s1−adt

atÎpat
.

sB12d

sii d When 0,gego,1 andrs0d=0, we find

rstd − rs`d . − F1 +
ḡ

a
− H ḡv

as1 − v2dJ 1

at
Ge−2s1−adt

4Îpat
.

sB13d

siii d When 0,gego,1 with rs0d=1, we have

rstd − rs`d . F1 −
ḡ

a
+ H ḡv

as1 − v2dJ 1

at
Ge−2s1−adt

4Îpat
.

sB14d

These results show that forgego.0, the density generically
approaches its stationary value as~t−3/2e−2s1−adt, with some
nontrivial amplitude. Only if the lattice is initially com-
pletely empty/occupied by particles is the long-time behavior
modified to~t−1/2e−2s1−adt sprovidedḡ /aÞ ±1d.

sivd The case wherege=go=g= ±1 is critical and we can
check from Eq.sB9d that one recovers the previously known
resultsf4,18g,

rstd − rs`d .
g

2Îpt
. sB15d

In this case, it is well knownf4,18g that the density of
particles approaches the steady state algebraically slowly
s~t−1/2d. For g=1 sonly pair annihilationd, the stationary
value is rs`d=0; in contrast, we findrs`d=1 for g=−1
sonly pair creationd. We emphasize that for such acritical
dynamics, neither the dynamical exponent nor the amplitude
of Eq. sB15d depend on the initial condition.

Whengego,0, it is difficult to directly analyze the long-
time behavior of the oscillating functionG1 andG2; instead,
we seek upper and lower bounds forlÞ ±1. We observe
that the denominator of the integrand in the expressions
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for G1 and G2 can be bounded as follows:s1−l2d2ø s1
+l4+2l2 cos 2qdø s1+l2d2. Therefore, we obtain for the
auxiliary functionsG1 andG2

l

1 + l2

e−2tJ1s2uautd
2uaut

ø G1sl,td ø
ls1 + l2d
s1 − l2d2

e−2tJ1s2uautd
2uaut

,

sB16d

2S l

1 + l2D2e−2tJ2s2uautd
2uaut

ø G2sl,td

ø 2S l

1 − l2D2e−2tJ2s2uautd
2uaut

.

sB17d

If l= ±1, one has the exact expressions

G1s1,td = − G1s− 1,td = e−2tJ0s2uautd; G2s1,td = G2s− 1,td

= se−2t/2uautdJ1s2uautd.

At long times and for finite n, e−2tJns2uautd
.se−2t /Îpuautdcosf2uaut−sp /4ds2n+1dg and therefore the
upper and lower bounds in Eqs.sB16d andsB17d display the
same time dependence. With the help of Eq.sB10d, we thus
deduce the following.

sid When 0,rs0d,1 fand obviouslyrs0dÞrs`dg,

rstd − rs`d . t−3/2e−2tFA cosS2uaut +
p

4
D

+ B cosS2uaut −
p

4
DG , sB18d

whereA andB are some amplitudes depending nontrivially
on all the parameters of the system and on the initial density.

sii d When rs0d=1, we obtain an explicit expression for
the long-time behavior of the density,

rstd − rs`d .
e−2t

2
J0s2uautd .

e−2t

2Îpuaut
cosS2uaut −

p

4
D .

sB19d

siii d When rs0d=0, we also have an explicit expression
for the long-time behavior of the density,

rstd − rs`d . −
e−2t

2
J0s2uautd .

e−2t

2Îpuaut
cosS2uaut +

3p

4
D .

sB20d

These results show that, forgego,0, the density displays
oscillations which are damped by a factort−be−2t, whereb
=3/2 for generic initial densitiesrs0d, with two exceptions:
we haveb=1/2 if the system is initially completely empty
or occupied.

Of course, following the same approach, one would be
able to compute everyn-point correlation function for both
the KISC and RDS. While perfectly straightforward, these
computations become rather tedious.
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